P8-0140-00037S

Pilot's cg location
Table of contents
1 Summary 3
2 Poser model 3
3 Manikin. 3
4 Measuring arms 4
5 Calculation of cg 5

1 SUMMARY

Pilot is one of the heaviest single elements in this aircraft. And it is only semirigid. Bones and joints, like knee, pelvis etc define geometry of pilot. Mass and center of gravity of separate parts of human body is taken from Dreyfuss Humanscale document.
Initial design was done using Poser software, and with it, position and posture of pilots was fixed.
A then 2D human manikin was created.
From the manikin, center of gravity of body parts were measured and cg of whole body was calculated.
The 2D manikin and spreadsheet of calculation are attached.

2 POSER MODEL

Poser (any version) is handy when designing cockpit. All controls can be positioned and space reserved for human pilot using it.
This was the final posture of pilot sitting in the selected seat.

Pilot was 184 cm tall.

3 MANIKIN

Manikin was created to represent large man (97,5\%).
Central trunk is rigid, but in good sitting position it is very near that.
The 20 mm sphere in parts is the cg location of that part. In the table below, length is distance between joints.
Basic dimension and mass of parts was:
total mass 92 kg

	mass		Length [m]	CG dist from joint from Trunk	
	portion	[kg]			
Head	7,10 \%	6,5	0,196	50,00 \%	0,098
Neck	2,50 \%	2,3	0,097	50,00 \%	0,049
Trunk	45,80 \%	42,1	0,488	50,00 \%	0,244
Upper arms	6,60 \%	6,1	0,302	43,60 \%	0,132
Forearms	3,80 \%	3,5	0,269	43,00 \%	0,116
Hands	1,30 \%	1,2	0,211	28,00 \%	0,059
Thights	21,00 \%	19,3	0,46	43,30 \%	0,199
Legs	9,00 \%	8,3	0,45	43,30 \%	0,195
Feet	2,90 \%	2,7	0,094	66,00 \%	0,062

Reference datum for cg calculations was selected to be seats rear fixing holes. The middle hole. Those thin lines are vertical and horizontal lines through it.
Reference datum can be any known point.

4 MEASURING ARMS

Horizontal distance of all parts is measured. Picture below is distance from datum to leg center of gravity. As this is forward of datum, arm value is taken as negative.

For vertical cg, same thing, but vertical dimensions.

5 CALCULATION OF CG

When all arms (at least horizontal) are taken, they are inserted into spreadsheet. Which makes "normal" center of gravity calculations.

item	kg	Horizontal CG		Vertical cg	
		arm [m]	Moment	arm [m]	Moment
Head	6,5	0,1383	0,903	0,8163	5,332
Neck	2,3	0,1423	0,327	0,67	1,541
Trunk	42,1	0,0427	1,799	0,3484	14,680
Upper arms	6,1	-0,0064	-0,039	0,4731	2,873
Forearms	3,5	-0,2751	-0,962	0,3958	1,384
Hands	1,2	-0,4871	-0,583	0,3908	0,467
Thights	19,3	-0,2463	-4,759	0,1486	2,871
Legs	8,3	-0,6552	-5,425	0,1436	1,189
Feet	2,7	-0,9258	-2,470	-0,0216	-0,058
Sum of	92		-11,207		30,279
center of gravity		-0,1218	m	0,3291	

This position is then inserted into drawing, and checked for blunders.

CG is in expected location, above belly button.

Then using location of reference datum transfer result to aircraft cg calculations.
---- END ----

