P8 – 01 10 – 00056S Pik 28 Stability & center of gravity limits

|          | S    | bisällysluettelo       |                |
|----------|------|------------------------|----------------|
| 1        | Cale | culation method        | 3              |
| 2        | San  | ple data               | 3              |
| 3        | Sam  | pple results           | 4              |
| 4        | PIK  | 28 Data                | 5              |
|          | 4.1  | Wing geometry          | 5              |
|          |      | Downwash               |                |
|          | 4.3  | Pik 28 values          | $\overline{7}$ |
| <b>5</b> | Cen  | iter of gravity limits | 8              |
|          | 5.1  | Front limit            | 8              |
|          | 5.2  | Rear limit             |                |
|          | 5.3  | Flight limits          |                |
| 6        |      | rces                   | 9              |

## 1 CALCULATION METHOD

Method is analytical analysis as described in: Piero Morelli, Static stability and control of sailplanes, May 1976, OSTIV This method is transferred to a spreadsheet, which can be found in: <u>www.HooTeeHoo.org/pik28/t1/ata01/index.html</u> Method is for sailplanes, but it is valid for all no-power flight conditions for Pik-28

The book has sample calculations done for a sample sailplane. Inserting these sample values in the spreadsheet, we can verify that the spreadsheet is correctly done.

## 2 SAMPLE DATA

#### SAILPLANE DATA

(used in the Sample Calculations within the text)

| Sailplane total weight<br>Wing loading<br>Induced drag effectiveness factor<br>Sailplane moment of inertia about X<br>Allowed load factor                                                                                    | W<br>W/S<br>e<br>Jz<br>n                                                            | =<br>=<br>=<br>= | 300 kg<br>23,1 kg/m²<br>0,94<br>157 kg•m•sec²<br>5,0 g                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------|
| Wing:<br>Wing span<br>Wing surface<br>Wing aspect ratio<br>Wing lift-curve slope<br>Wing max. lift coeff.<br>Wing setting<br>Wing m.a.c.<br>Wing zero lift moment coeff.<br>Wing aerod. centre location (as a fraction of c) | b<br>S<br>A<br>$a_w$<br>$C_{Lmax}$<br>$i_w = 5^\circ$<br>c<br>C<br>MOW<br>$x_a/c$   |                  | 15 m<br>13 m <sup>2</sup><br>17,3<br>5.4 per rad.<br>1.35<br>0,087 rad<br>0,94 m<br>-0,1<br>0,25 |
| Wing dihedral<br>Wing root (centerline) chord<br>Wing tip chord<br>Wing taper ratio (straight tapered wing)<br>Wing section lift curve slope (per radian)<br>Fuselage:<br>Fuselage length                                    |                                                                                     |                  | 2° .5<br>1,30 m<br>1,30 m<br>0,35<br>6,14<br>4,20 m                                              |
| Horizontal tail:<br>Tail arm                                                                                                                                                                                                 | dC <sub>Mfus</sub> / dC <sub>Lw</sub><br>(∆C <sub>Mow</sub> ) <sub>fus</sub><br>I't | =                | 0.03<br>-0,007<br>3,86 m                                                                         |
| Tail span<br>Tail surface<br>Tailplane surface<br>Tail m.a.c                                                                                                                                                                 | bt<br>St<br>Sf<br>Ct                                                                | =<br>=<br>=      | 3 m<br>1.6 m <sup>2</sup><br>0.96 m <sup>2</sup><br>0,5 m                                        |

| Tail m.a.c leading edge X location   | X <sub>ct</sub>                                            | = | 3,942 m                  |
|--------------------------------------|------------------------------------------------------------|---|--------------------------|
| Downwash factor                      | 1 - dε/dα                                                  | = | 0,75                     |
| Elevator effectiveness               | $\tau = \partial \alpha_t / \partial \delta$               | = | 0,58                     |
| Tab effectiveness                    | $\tau_{tab}$ = $\partial \alpha_t / \partial \delta_{tab}$ | = | 0,02                     |
| Elevator hinge moment coefficient    | b <sub>0</sub>                                             | = | 0                        |
| Elevator surface                     | Se                                                         | = | 0.64 m²                  |
| Elevator mean chord                  | Ce                                                         | = | 0.213                    |
| Elevator deflection up               |                                                            | = | -21 °                    |
| Tail lift curve slope                | at                                                         | = | 4.3 rad <sup>-1</sup>    |
| Tail setting                         | i <sub>t</sub> = - 1°                                      | = | - 0.017 rad              |
| Tail volumetric coeff.               | $\overline{V'}$                                            | = | 0,506                    |
| Elevator gearing                     | G                                                          | = | 2.5 radm <sup>-1</sup>   |
| Hinge moment coefficients            | $b1 = \partial C_H / \partial Ms$                          | = | -0.010 deg <sup>-1</sup> |
| Hinge moment coefficients            | b2 = $\partial C_H / \partial \delta$                      | = | -0.015 deg <sup>-1</sup> |
| Hinge moment coefficients            | b3 = $\partial C_H / \partial \delta_{tab}$                | = | -0.005 deg <sup>-1</sup> |
| Landing attitude (in ground effect): |                                                            |   | · ·                      |
| Wing height                          | h <sub>wge</sub>                                           | = | 3 m                      |
| Tailplane height                     | h <sub>tge</sub>                                           | = | 3 m                      |
|                                      |                                                            |   |                          |

### 3 SAMPLE RESULTS

When these were inserted in spreadsheet, results are as shown in blue cells. The values in red cells are those given as results in the book.

First three rows are for front cg limits and rest are for rear limits.

| pull up, Clmax n=1, ground effect6,6pull up, Va, n max9,7                                                                                                                   | % 9,0%                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| dP/dn=-1(kg/g) pull, SL42stick free manouvring point, high altitude49stick fixed neutral point50dP/dn=-0,5(kg/g) pull, SL51stick fixed manouvring point, at high altitude57 | 7%     40%       9%     43%       8%     49%       1%     50%       3%     52%       4%     58% |

Difference in results can be traced in the fact, that book uses in its calculation two to three significant digits. Spreadsheet uses much more digits.

Values of Cessna 150 were tested and results were, that c.g range is 855 mm to 946 mm. Aircraft flight manual gives c.g. range as 829 mm to 927 mm.

Undoubtedly Cessna has been thoroughly flight tested, but taking that into account, spreadsheet gives pretty good results.

# 4 PIK 28 DATA

Start values are geometry dimension and some calculated values.

## 4.1 Wing geometry

Wing geometry is taken from data sheet and 3D model. Values were put in LinairPro 4.0 to calculate wing lift curve slope.



Wing incidence is -1,0 deg, which guarantees low drag at cruise speed.



a = 5,0799 [1/rad]

Wing aerodynamic mean chord: Mac = 1,129 m Winx apex X = 0,37 m MAC LE X = 0,414

Horizontal tail values are defined in same way, and are:

Tail MAC is MAC t = 0,724 m Tail lift curve slope A = 4,6708 [1/rad]

## 4.2 Downwash

Downwash behind wing and how it changes has role in aircraft stability. When wing produce lift, it turn flow downward (when lift is up). This relation was determined using CFD. See document P8-0110-000448 In the picture below are streamlines from forward of wing at different spanwise



The downwash was measured from Y locations of 0,5 and 1,0 meters at the horizontal tail location.



Measured downwash angles in graphical form are like this:



The value needed is  $(1 - d\epsilon/d\alpha)$  and its numeric value is 0,8203.

# 4.3 Pik 28 values

Values for calculation are:

#### AEROPLANE DATA

| Aeroplane total weight<br>Wing loading<br>Induced drag effectiveness factor<br>Aeroplane moment of inertia about X<br>Allowed load factor                                                                                                | W<br>W/S<br>e<br>Jz<br>n                                                                                        | =<br>=<br>=<br>= | 600 kg<br>68,57 kg/m²<br>0,6<br>18,9 kg•m•sec²<br>4,4 g                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------|
| Wing:<br>Wing span<br>Wing surface area<br>Wing aspect ratio<br><b>Wing lift-curve slope</b><br>Wing max. lift coeff.<br>Wing setting<br>Wing m.a.c.<br>Wing zero lift moment coeff.<br>Wing aerod. centre location (as a fraction of c) | b<br>S<br>A<br><b>a</b> w<br>C <sub>Lmax</sub><br>i <sub>w</sub><br>c<br>C <sub>MOW</sub><br>x <sub>a</sub> /c  |                  | 8,14 m<br>8,75 m <sup>2</sup><br>7,57<br><b>5,0799 1/rad.</b><br>1.475<br>-1,02°<br><b>1,129</b> m<br>-0,0705<br>0,25 |
| Wing dihedral<br>Wing root (centerline) chord<br>Wing tip chord<br>Wing section lift curve slope (per radian)<br>Fuselage:<br>Fuselage length                                                                                            | Γ<br>Cr<br>Ct<br>a <sub>0</sub><br>dC <sub>Mfus</sub> / dC <sub>Lw</sub><br>(ΔC <sub>Mow</sub> ) <sub>fus</sub> |                  | 3°<br>1,306 m<br>0,718 m<br>6,50<br>6,61 m<br>0.03<br>-0,007                                                          |

Horizontal tail:

| Tail arm<br>Tail span<br>Tail surface<br>Tailplane surface<br>Tail apex X location<br>Tail m.a.c<br>Tail m.a.c leading edge X location                                                                                                                                                  | l't<br>bt<br>St<br>Sf<br>Ct<br>Xct                                                                                                                                                                                                       | =<br>=<br>=<br>= | 3,41 m<br>2,42 m<br>1.83 m <sup>2</sup><br>0.958 m <sup>2</sup><br>3,768 m<br>0,768 m<br>3,869 m                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Downwash factor                                                                                                                                                                                                                                                                         | 1 - dε/dα                                                                                                                                                                                                                                | =                | 0,8203                                                                                                                                                                                             |
| Elevator effectiveness                                                                                                                                                                                                                                                                  | $\tau = \partial \alpha_t / \partial \delta$                                                                                                                                                                                             | =                | 0,59                                                                                                                                                                                               |
| Tab effectiveness                                                                                                                                                                                                                                                                       | $\tau_{tab}$ = $\partial \alpha_t / \partial \delta_{tab}$                                                                                                                                                                               | =                | 0,00                                                                                                                                                                                               |
| Elevator hinge moment coefficient                                                                                                                                                                                                                                                       | b <sub>0</sub>                                                                                                                                                                                                                           | =                | 0                                                                                                                                                                                                  |
| Elevator surface<br>Elevator mean chord<br>Elevator deflection up<br>Tail lift curve slope<br>Tail setting<br>Tail volumetric coeff.<br>Elevator gearing<br>Hinge moment coefficients<br>Hinge moment coefficients<br>Hinge moment coefficients<br>Landing attitude (in ground effect): | $\begin{array}{l} S_{e} \\ c_{e} \end{array}$ $\begin{array}{l} a_{t} \\ \frac{i_{t}}{V'} \\ G \\ b1 = \partial C_{H} / \partial Ms \\ b2 = \partial C_{H} / \partial \delta \\ b3 = \partial C_{H} / \partial \delta_{tab} \end{array}$ |                  | 0.835 m <sup>2</sup><br>0.970<br>-35 °<br>4.30 rad <sup>-1</sup><br>+ 1,10°<br>0,612<br>2.5 radm <sup>-1</sup><br>-0.010 deg <sup>-1</sup><br>-0.015 deg <sup>-1</sup><br>-0.005 deg <sup>-1</sup> |
| Wing height<br>Tailplane height                                                                                                                                                                                                                                                         | h <sub>wge</sub><br>h <sub>tge</sub>                                                                                                                                                                                                     | =<br>=           | 0,79 m<br>0,6 m                                                                                                                                                                                    |

# 5 CENTER OF GRAVITY LIMITS

### 5.1 Front limit

According to calculations, forward limits are

| pull up, Clmax n=1                | 2,8 %  |
|-----------------------------------|--------|
| pull up, Clmax n=1, ground effect | 13,9 % |
| pull up, Va, n max                | -4,3 % |

Test flight will define true values. So initial forward limit is set to 14 % MAC.

# 5.2 Rear limit

| According to calculations, forward limits are  |        |
|------------------------------------------------|--------|
| stick free neutral point                       | 42,4 % |
| dP/dn=-1(kg/g) pull, SL                        | 41,7 % |
| stick free manouvring point, high altitude     | 44,3 % |
| stick fixed neutral point                      | 51,1 % |
| dP/dn=-0,5(kg/g) pull, SL                      | 44,9 % |
| stick fixed manouvring point, at high altitude | 52,3 % |
| stick free manouvring point, SL                | 46,8 % |
| stick fixed manouvring point, SL               | 55,0 % |

Neutral points looks to be fairly aft. So initial rear limit is set to 37 % MAC, using 5% margin.

## 5.3 Flight limits

For initial flight testing limits are: forward limit is set to 17 % MAC. rear limit is set to 34 % MAC.

And in aircraft coordinates, center of gravity limits are: 571 mm - 829 mm.

#### 6 SOURCES

/2/ Piero Morelli, Static stability and control of sailplanes, May 1976, OSTIV

--- LOPPU ----