P8-01 10-00056S

Pik 28

Stability \& center of gravity limits
Sisällysluettelo
1 Calculation method 3
2 Sample data 3
3 Sample results 4
4 PIK 28 Data 5
4.1 Wing geometry 5
4.2 Downwash 6
4.3 Pik 28 values 7
5 Center of gravity limits 8
5.1 Front limit 8
5.2 Rear limit 8
5.3 Flight limits 9
6 Sources 9

1 CALCULATION METHOD

Method is analytical analysis as described in:
Piero Morelli, Static stability and control of sailplanes, May 1976, OSTIV
This method is transferred to a spreadsheet, which can be found in:
www.HooTeeHoo.org/pik28/t1/ata01/index.html
Method is for sailplanes, but it is valid for all no-power flight conditions for Pik-28

The book has sample calculations done for a sample sailplane. Inserting these sample values in the spreadsheet, we can verify that the spreadsheet is correctly done.

2 SAMPLE DATA

SAILPLANE DATA

(used in the Sample Calculations within the text)

Sailplane total weight
Wing loading
Induced drag effectiveness factor
Sailplane moment of inertia about X
Allowed load factor
Wing:
Wing span
Wing surface
Wing aspect ratio
Wing lift-curve slope
Wing max. lift coeff.
Wing setting
$\mathrm{W} \quad=\quad 300 \mathrm{~kg}$
W/S $\quad=\quad 23,1 \mathrm{~kg} / \mathrm{m}^{2}$
e $=0,94$
Jz
n
$=157 \mathrm{~kg} \cdot \mathrm{~m} \cdot \mathrm{sec}^{2}$
$=5,0 \mathrm{~g}$

Wing m.a.c.
Wing zero lift moment coeff.
Wing aerod. centre location (as a fraction of c)
b $\quad=15 \mathrm{~m}$
$\mathrm{S}=13 \mathrm{~m}^{2}$
$\mathrm{A}=17,3$
$\mathrm{a}_{\mathrm{w}} \quad=\quad 5.4$ per rad.
$C_{L \max }=1.35$
$\mathrm{i}_{\mathrm{w}}=5^{\circ} \quad=0,087 \mathrm{rad}$
c $\quad=0,94 \mathrm{~m}$
$\mathrm{C}_{\text {MOW }}=-0,1$
$X_{a} / \mathrm{C}=0,25$

Wing dihedral
Wing root (centerline) chord
Wing tip chord
Wing taper ratio (straight tapered wing)
Wing section lift curve slope (per radian)
Γ
$C_{r}-{ }^{-}$
$\mathrm{C}_{\mathrm{t}} \quad=1,30 \mathrm{~m}$
$\mathrm{r}=\mathrm{C}_{+} / \mathrm{c}_{\mathrm{r}} \quad=0,35$
$a_{0}=6,14$
Fuselage:
Fuselage length

	$=4,20 \mathrm{~m}$
$\mathrm{dC}_{\text {Mfus }} / \mathrm{dC}_{\mathrm{Lw}}$	$=0.03$
$\left(\Delta \mathrm{C}_{\text {Mow }}\right)$	$=-0,007$

Horizontal tail:
Tail arm
$\mathrm{l}_{\mathrm{t}} \quad=3,86 \mathrm{~m}$
Tail span
$b_{t} \quad=3 \mathrm{~m}$
Tail surface
Tailplane surface
Tail m.a.c
$\mathrm{S}_{\mathrm{t}} \quad=1.6 \mathrm{~m}^{2}$
$\mathrm{S}_{\mathrm{f}} \quad=0.96 \mathrm{~m}^{2}$
$\mathrm{C}_{\mathrm{t}} \quad=0,5 \mathrm{~m}$

Tail m.a.c leading edge X location	X_{ct}	$=3,942 \mathrm{~m}$
Downwash factor	$1-\mathrm{d} \varepsilon / \mathrm{d} \alpha$	$=0,75$
Elevator effectiveness	$\tau=\partial \alpha_{\mathrm{t}} / \partial \delta$	$=0,58$
Tab effectiveness	$\tau_{\mathrm{tab}}=\partial \alpha_{\mathrm{t}} / \partial \delta_{\mathrm{tab}}$	$=0,02$
Elevator hinge moment coefficient	b_{0}	$=0$
		$=0.64 \mathrm{~m}^{2}$
Elevator surface	S_{e}	$=0.213$
Elevator mean chord	C_{e}	$=-21^{\circ}$
Elevator deflection up		$=4.3 \mathrm{rad}^{-1}$
Tail lift curve slope	a_{t}	$=-0.017 \mathrm{rad}^{\circ}$
Tail setting	$\mathrm{i}_{\mathrm{t}}=-1^{\circ}$	$=0,506$
Tail volumetric coeff.	V^{\prime}	$=2.5 \mathrm{radm}^{-1}$
Elevator gearing	G	$=-0.010 \mathrm{deg}^{-1}$
Hinge moment coefficients	$\mathrm{b} 1=\partial \mathrm{C}_{\mathrm{H}} / \partial \mathrm{Ms}$	$=-0.015 \mathrm{deg}^{-1}$
Hinge moment coefficients	$\mathrm{b} 2=\partial C_{H} / \partial \delta$	$=-005 \mathrm{deg}^{-1}$
Hinge moment coefficients	$\mathrm{b} 3=\partial \mathrm{C}_{\mathrm{H}} / \partial \delta_{\mathrm{tab}}$	$=-0.0$
Landing attitude (in ground effect):		$\mathrm{h}_{\mathrm{wge}}$
Wing height	$\mathrm{h}_{\mathrm{tge}}$	$=3 \mathrm{~m}$
Tailplane height		$=3 \mathrm{~m}$

3 SAMPLE RESULTS

When these were inserted in spreadsheet, results are as shown in blue cells. The values in red cells are those given as results in the book.
First three rows are for front cg limits and rest are for rear limits.

pull up, Clmax n=1	$5,7 \%$	$4,3 \%$
pull up, Clmax n=1, ground effect	$6,6 \%$	$6,1 \%$
pull up, Va, n max	$9,7 \%$	$9,0 \%$
stick free neutral point	$39,7 \%$	40%
dP/dn=-1(kg/g) pull, SL	$42,9 \%$	43%
stick free manouvring point, high altitude	$49,8 \%$	49%
stick fixed neutral point	$50,1 \%$	50%
dP/dn=-0,5(kg/g) pull, SL	$51,3 \%$	52%
stick fixed manouvring point, at high altitude	$57,4 \%$	58%
stick free manouvring point, SL	$62,4 \%$	60%
stick fixed manouvring point, SL	$70,8 \%$	68%

Difference in results can be traced in the fact, that book uses in its calculation two to three significant digits. Spreadsheet uses much more digits.
Values of Cessna 150 were tested and results were, that c.g range is 855 mm to 946 mm . Aircraft flight manual gives c.g. range as 829 mm to 927 mm .
Undoubtedly Cessna has been thoroughly flight tested, but taking that into account, spreadsheet gives pretty good results.

4
 PIK 28 DATA

Start values are geometry dimension and some calculated values.

4.1 Wing geometry

Wing geometry is taken from data sheet and 3D model.
Values were put in LinairPro 4.0 to calculate wing lift curve slope.

These are

Wing lift curve slope
Zero lift angle
Zero lift moment $\mathrm{CL}=0$
Zero lift drag CL=0

$$
\begin{aligned}
& 5,0799 \mathrm{l} / \mathrm{rad} \\
& -2,29 \mathrm{deg} \\
& -0,0705 \\
& 0,010034
\end{aligned}
$$

Wing incidence is $-1,0$ deg, which guarantees low drag at cruise speed.

$$
\mathrm{a}=5,0799[1 / \mathrm{rad}]
$$

Wing aerodynamic mean chord:
$\mathrm{Mac}=1,129 \mathrm{~m}$
Winx apex $\mathrm{X}=0,37 \mathrm{~m}$
MAC LE $\quad X=0,414$
Horizontal tail values are defined in same way, and are:
Tail MAC is
MAC $\mathrm{t}=0,724 \mathrm{~m}$
Tail lift curve slope
$\mathrm{A}=4,6708[1 / \mathrm{rad}]$

4.2 Downwash

Downwash behind wing and how it changes has role in aircraft stability.
When wing produce lift, it turn flow downward (when lift is up).
This relation was determined using CFD.
See document P8-0110-00044S
In the picture below are streamlines from forward of wing at different spanwise locations.

The downwash was measured from Y locations of 0,5 and 1,0 meters at the horizontal tail location.

Measured downwash angles in graphical form are like this:

The value needed is ($1-\mathrm{d} \varepsilon / \mathrm{d} \alpha$) and its numeric value is 0,8203 .

4.3 Pik 28 values

Values for calculation are:

AEROPLANE DATA

Aeroplane total weight

W	$=600 \mathrm{~kg}$
$\mathrm{~W} / \mathrm{S}$	$=68,57 \mathrm{~kg} / \mathrm{m}^{2}$
e	$=0,6$
Jz	$=18,9 \mathrm{~kg} \cdot \mathrm{~m} \cdot \mathrm{sec}^{2}$
n	$=4,4 \mathrm{~g}$

Wing:
Wing span
Wing surface area
b

Wing aspect ratio
Wing lift-curve slope
Wing max. lift coeff.
Wing setting
Wing m.a.c.
Wing zero lift moment coeff.
Wing aerod. centre location (as a fraction of c)
$\mathrm{S}=8,75 \mathrm{~m}^{2}$
$\mathrm{A}=7,57$
$\mathrm{a}_{\mathrm{w}} \quad=\quad 5,07991 / \mathrm{rad}$.
$C_{\text {Lmax }} \quad=1.475$
$\mathrm{i}_{\mathrm{w}}=-1,02^{\circ}$
c $=1,129 \mathrm{~m}$
$\mathrm{C}_{\text {mow }}=-0,0705$
$x_{a} / c=0,25$

Wing dihedral
Wing root (centerline) chord
$\Gamma \quad=3^{\circ}$
Wing tip chord
$\mathrm{C}_{\mathrm{r}} \quad=1,306 \mathrm{~m}$
$\mathrm{C}_{\mathrm{t}} \quad=0,718 \mathrm{~m}$
Wing section lift curve slope (per radian)
a_{0}
$=6,50$
Fuselage:
Fuselage length

	$=6,61 \mathrm{~m}$
$\mathrm{dC}_{\text {Mfus }} / \mathrm{dC}_{\mathrm{Lw}}$	$=0.03$
$\left(\Delta \mathrm{C}_{\text {Mow }) \text { fus }}\right.$	$=$
	$=-0,007$

Horizontal tail:

Tail arm	$\mathrm{l}^{\prime} \mathrm{t}$	$=$	3,41 m
Tail span	b_{t}	=	2,42 m
Tail surface	S_{t}	$=$	$1.83 \mathrm{~m}^{2}$
Tailplane surface	S_{f}	$=$	$0.958 \mathrm{~m}^{2}$
Tail apex X location			3,768 m
Tail m.a.c	$\mathrm{C}_{\text {t }}$	=	0,768 m
Tail m.a.c leading edge X location	$\mathrm{X}_{\text {ct }}$	=	3,869 m
Downwash factor	1-d $\varepsilon / d \alpha$	$=$	0,8203
Elevator effectiveness	$\tau=\partial \alpha_{t} / \partial \delta$	$=$	0,59
Tab effectiveness	$\tau_{\text {tab }}=\partial \alpha_{t} / \partial \delta_{\text {tab }}$	=	0,00
Elevator hinge moment coefficient	b_{0}	=	0
Elevator surface	$\mathrm{S}_{\text {e }}$	$=$	$0.835 \mathrm{~m}^{2}$
Elevator mean chord	$\mathrm{C}_{\text {e }}$	=	0.970
Elevator deflection up		=	-35 ${ }^{\circ}$
Tail lift curve slope	a_{t}	=	$4.30 \mathrm{rad}^{-1}$
Tail setting	${ }_{\text {It }}$	=	+1,10 ${ }^{\circ}$
Tail volumetric coeff.	$\overline{V^{\prime}}$	=	0,612
Elevator gearing	G	=	$2.5 \mathrm{radm}^{-1}$
Hinge moment coefficients	$\mathrm{b} 1=\partial \mathrm{C}_{H} / \partial \mathrm{Ms}$	=	-0.010 deg ${ }^{-1}$
Hinge moment coefficients	$\mathrm{b} 2=\partial \mathrm{C}_{H} / \partial \delta$	=	-0.015 deg-1
Hinge moment coefficients	$\mathrm{b} 3=\partial \mathrm{C}_{H} / \partial \delta_{\text {tab }}$	$=$	$-0.005 \mathrm{deg}^{-1}$
Landing attitude (in ground effect):			
Wing height	$\mathrm{h}_{\text {wge }}$	$=$	0,79 m
Tailplane height	$\mathrm{h}_{\text {tge }}$	=	0,6 m

5 CENTER OF GRAVITY LIMITS

5.1 Front limit

According to calculations, forward limits are

pull up, Clmax n=1	$2,8 \%$
pull up, CImax n=1, ground effect	$13,9 \%$
pull up, Va, $n \max$	$-4,3 \%$

Test flight will define true values.
So initial forward limit is set to 14% MAC.

5.2 Rear limit

According to calculations, forward limits are
stick free neutral point 42,4 \%
dP/dn=-1(kg/g) pull, SL 41,7 \%
stick free manouvring point, high altitude $44,3 \%$
stick fixed neutral point $\quad 51,1 \%$
dP/dn=-0,5(kg/g) pull, SL $44,9 \%$
stick fixed manouvring point, at high altitude $52,3 \%$
stick free manouvring point, SL $\quad 46,8 \%$
stick fixed manouvring point, SL 55,0 \%

Neutral points looks to be fairly aft.
So initial rear limit is set to 37% MAC, using 5% margin.

5.3 Flight limits

For initial flight testing limits are: forward limit is set to 17% MAC.
rear limit is set to 34% MAC.

And in aircraft coordinates, center of gravity limits are:
$571 \mathrm{~mm}-829 \mathrm{~mm}$.

6 SOURCES

/2/ Piero Morelli, Static stability and control of sailplanes, May 1976, OSTIV
— LOPPU -

